Weak KAM Pairs and Monge-Kantorovich Duality

نویسنده

  • Boris Buffoni
چکیده

The dynamics of globally minimizing orbits of Lagrangian systems can be studied using the Barrier function, as Mather first did, or using the pairs of weak KAM solutions introduced by Fathi. The central observation of the present paper is that Fathi weak KAM pairs are precisely the admissible pairs for the Kantorovich problem dual to the Monge transportation problem with the Barrier function as cost. We exploit this observation to recover several relations between the Barrier functions and the set of weak KAM pairs in an axiomatic and elementary way. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gradient Descent Solution to the Monge-Kantorovich Problem

We present a new, simple, and elegant algorithm for computing the optimal mapping for the Monge-Kantorovich problem with quadratic cost. The method arises from a reformulation of the dual problem into an unconstrained minimization of a convex, continuous functional, for which the derivative can be explicitly found. The Monge-Kantorovich problem has applications in many fields; examples from ima...

متن کامل

A general duality theorem for the Monge-Kantorovich transport problem

The duality theory of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap, provided the optimal transport problem is formulated in a suitably r...

متن کامل

Characterization of the Optimal Plans for the Monge-kantorovich Transport Problem

We present a general method, based on conjugate duality, for solving a convex minimization problem without assuming unnecessary topological restrictions on the constraint set. It leads to dual equalities and characterizations of the minimizers without constraint qualification. As an example of application, the Monge-Kantorovich optimal transport problem is solved in great detail. In particular,...

متن کامل

Optimal Transportation Problem by Stochastic Optimal Control

We solve optimal transportation problem using stochastic optimal control theory. Indeed, for a super linear cost at most quadratic at infinity, we prove Kantorovich duality theorem by a zero noise limit (or vanishing viscosity) argument.. We also obtain a characterization of the support of an optimal measure in Monge-Kantorovich minimization problem (MKP) as a graph. Our key tool is a duality r...

متن کامل

A Finite Dimensional Linear Programming Approximation of Mather’s Variational Problem

Mather variational principle, introduced by John N. Mather in [18, 19], is an important tool in Lagrangian dynamic. In recent years, several authors have studied this topic in connections with various fields such as weak Kam Theory ([5, 7, 10, 11]), Monge-Kantorovich mass transportation and geometric measure theory ([3, 4, 6, 13, 14]). In this paper we discuss a finite dimensional approximation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008